Improving the Efficiency of Dynamic Programming on Tree Decompositions via Machine Learning
نویسندگان
چکیده
Dynamic Programming (DP) over tree decompositions is a well-established method to solve problems – that are in general NP-hard – efficiently for instances of small treewidth. Experience shows that (i) heuristically computing a tree decomposition has negligible runtime compared to the DP step; (ii) DP algorithms exhibit a high variance in runtime when using different tree decompositions; in fact, given an instance of the problem at hand, even decompositions of the same width might yield extremely diverging runtimes. We thus propose here a novel and general method that is based on a selection of the best decomposition from an available pool of heuristically generated ones. For this purpose, we require machine learning techniques based on features of the decomposition rather than on the actual problem instance. We report on extensive experiments in different problem domains which show a significant speedup when choosing the tree decomposition according to this concept over simply using an arbitrary one of the same width.
منابع مشابه
Two-stage fuzzy-stochastic programming for parallel machine scheduling problem with machine deterioration and operator learning effect
This paper deals with the determination of machine numbers and production schedules in manufacturing environments. In this line, a two-stage fuzzy stochastic programming model is discussed with fuzzy processing times where both deterioration and learning effects are evaluated simultaneously. The first stage focuses on the type and number of machines in order to minimize the total costs associat...
متن کاملMachine Reliability in a Dynamic Cellular Manufacturing System: A Comprehensive Approach to a Cell Layout Problem
The fundamental function of a cellular manufacturing system (CMS) is based on definition and recognition of a type of similarity among parts that should be produced in a planning period. Cell formation (CF) and cell layout design are two important steps in implementation of the CMS. This paper represents a new nonlinear mathematical programming model for dynamic cell formation that employs the ...
متن کاملMeasuring a Dynamic Efficiency Based on MONLP Model under DEA Control
Data envelopment analysis (DEA) is a common technique in measuring the relative efficiency of a set of decision making units (DMUs) with multiple inputs and multiple outputs. Standard DEA models are quite limited models, in the sense that they do not consider a DMU at different times. To resolve this problem, DEA models with dynamic structures have been proposed.In a recent pape...
متن کاملExploring Regularization in Learning to Predict Structured Objects
Discriminative learning framework is one of the very successful fields of machine learning. The methods of this paradigm, such as Boosting, and Support Vector Machines have significantly advanced the state-of-the-art for classification by improving the accuracy and by increasing the applicability of machine learning methods. However, traditionally these methods do not exploit dependencies betwe...
متن کاملImproving the Performance of Machine Learning Algorithms for Heart Disease Diagnosis by Optimizing Data and Features
Heart is one of the most important members of the body, and heart disease is the major cause of death in the world and Iran. This is why the early/on time diagnosis is one of the significant basics for preventing and reducing deaths of this disease. So far, many studies have been done on heart disease with the aim of prediction, diagnosis, and treatment. However, most of them have been mostly f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Artif. Intell. Res.
دوره 58 شماره
صفحات -
تاریخ انتشار 2015